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Abstract

Background: Despite substantial research and development investment in Alzheimer’s disease (AD), effective
therapeutics remain elusive. Significant emerging evidence has linked cholesterol, β-amyloid and AD, and several
studies have shown a reduced risk for AD and dementia in populations treated with statins. However, while some
clinical trials evaluating statins in general AD populations have been conducted, these resulted in no significant
therapeutic benefit. By focusing on subgroups of the AD population, it may be possible to detect endotypes
responsive to statin therapy.

Methods: Here we investigate the possible protective and therapeutic effect of statins in AD through the analysis
of datasets of integrated clinical trials, and prospective observational studies.

Results: Re-analysis of AD patient-level data from failed clinical trials suggested by trend that use of simvastatin
may slow the progression of cognitive decline, and to a greater extent in ApoE4 homozygotes. Evaluation of
continual long-term use of various statins, in participants from multiple studies at baseline, revealed better cognitive
performance in statin users. These findings were supported in an additional, observational cohort where the
incidence of AD was significantly lower in statin users, and ApoE4/ApoE4-genotyped AD patients treated with
statins showed better cognitive function over the course of 10-year follow-up.

Conclusions: These results indicate that the use of statins may benefit all AD patients with potentially greater
therapeutic efficacy in those homozygous for ApoE4.
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Background
Alzheimer’s disease (AD) has reached epidemic propor-
tions both in the United States and globally [1–4]. Ther-
apeutics to prevent, delay and treat AD are urgently
needed as the epidemic continues to grow with the glo-
bal aging population. Despite substantial research and
development investment in AD, effective therapeutics
remain elusive. As of 2008, at least 172 drug develop-
ment failures in AD therapeutics were identified [5, 6].
In 2012 the Pharmaceutical Research and Manufacturers
of America (PhRMA), an industry trade group,

acknowledged 101 late-stage clinical trial failures be-
tween 1990 and 2012 [7]. There have been no successes
since 2002. Drug discovery in neuroscience in general is
complicated and uncertain, with overall failure rates
greater than 95% for CNS diseases, and very long devel-
opment programs of 10–15 years from discovery to mar-
keting approval [7].
In the United States, the National Alzheimer’s Project

Act (NAPA; US Public Law 111-375) was enacted in
2011 followed by a National Plan to prevent and effect-
ively treat AD by 2025 [1]. To achieve this goal within a
decade will require identifying effective therapeutics cur-
rently in clinical use and repositioning existing drugs
based on conserved pathways and targets of complex
diseases [6]. Given the complexity and progressive na-
ture of the disease, it will be necessary to identify
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phenotypes and genotypes responsive to therapeutic
candidates to realize a precision medicine approach to
prevention and treatment [8, 9].
Several studies have reported reduced risk for inci-

dence and progression of AD and dementia in statin-
treated populations [10–13]. Further, a substantial body
of cellular and molecular mechanistic evidence links
cholesterol, β-amyloid (Aβ) generation and AD [14–22]
and has helped support clinical trials of statins in per-
sons with AD. These trials, however, resulted in no sig-
nificant therapeutic benefit [23–26]. For example, in one
randomized, controlled trial, a 72-week course of treat-
ment with atorvastatin in 640 mild to moderate AD pa-
tients did not improve cognitive measures [26]. A
second, 18-month, randomized, placebo-controlled trial
of simvastatin in 406 participants with mild to moderate
AD did not show advantageous clinical effects [24]. In
another placebo-controlled simvastatin trial, simvastatin
did not significantly alter cerebrospinal fluid levels of Aβ
although there was evidence for efficacy in Aβ1–40 re-
duction in persons with “mild” AD [25]. Evidence of dys-
lipidemia was an exclusion criterion in these trials. A
critical, and perhaps determinant, difference between the
statin clinical treatment trials and observational studies
is that persons in clinical trials were not recruited based
on dysregulated cholesterol/lipid homeostasis and in
some instances were excluded from enrollment [23, 24].
In contrast, persons receiving statins in observational
studies likely had evidence of cholesterol dyslipidemia
and would thus be predicted to benefit from therapeu-
tics targeting restoration of cholesterol homeostasis [27].
A key regulator of cholesterol and lipid homeostasis is

the cholesterol transporter, ApoE. The ApoE4 allele of
the apolipoprotein E gene is associated with higher chol-
esterol levels [28] and an increased risk of developing
AD [29–31]. An average 58–67% of persons participat-
ing in clinical trials for AD are ApoE4 positive [32].
Based on these clinical findings and mechanistic analyses
indicating that cholesterol and ApoE4 play a role in Aβ
burden, metabolism and inflammation in brain, we
hypothesize that if statins do have a preventative or
therapeutic effect, it would be more evident in persons
carrying the ApoE4 allele and that statin use would delay
symptoms and progression of AD.
Herein, we investigate whether responders were de-

tectable in multiple patient cohorts of integrated clin-
ical trial data and studies in persons diagnosed with
AD as well as prospective observational studies. Meta-
analysis of patient-level data integrated from multiple
sources can assist in gaining a better understanding of
the disease under investigation by enabling comparison
of treatments, outcomes and other disease-related pat-
terns. By combining data from many studies, a suffi-
ciently large cohort can be generated and can allow for

identification of subgroups who respond better to
treatment.

Methods
The Alzheimer’s disease integrated clinical studies dataset
Data were drawn from an integrated dataset of Alzhei-
mer’s clinical trials and observational studies described
previously [33, 34]. In brief, the datasets consisted of
18 studies from the Alzheimer’s Disease Cooperative
Study (ADCS, http://adcs.org) and the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI, http://www.adni-
info.org) conducted from 1993 to 2012 to analyze the
decline on the Alzheimer’s Disease Assessment Sca-
le—cognitive subscale [35] (ADAS-cog), the Clinical
Dementia Rating—Sum of Boxes [36] (CDR-SB) scale
and the Mini-Mental State Examination [37] (MMSE)
over time. The integrated dataset includes demograph-
ics information, cognitive assessments, ApoE genotyp-
ing, concomitant medications information and blood
test data for a total of 4574 participants, and 25,164 en-
counters. All diagnoses of AD were based on National
Institute of Neurological and Communicative Disorders
and Stroke/Alzheimer’s Disease and Related Disorders
Association criteria [38]. Statin use was captured from
the concomitant medication logs using the following
search terms: “simvastatin”, “fluvastatin”, “atorvastatin”,
“rosuvastatin”, “lovastatin”, “pravastatin”, “pitavastatin”,
“Crestor”, “Lipitor”, “Lescol”, “Mevacor”, “Pravachol”,
“Zocor” and “Livalo”.

Re-analysis of a simvastatin trial
A simvastatin-treated group [24] consisting of 171 sub-
jects with a determined ApoE genotype who were
treated with simvastatin 20 mg/day for 6 weeks and
then 40 mg/day for the remainder of 18 months
(Fig. 1a) formed our treatment (test) group. To in-
crease our ability to detect treatment effect, subjects
treated with placebo who met our selection criteria
were pooled to create a larger comparator arm. A total
of 460 AD subjects assigned to placebo-treated groups
from six trials included in the dataset, with no known
concomitant statin use, with a determined ApoE geno-
type, and with at least one assessment on the ADAS-
cog (at baseline or thereafter) were used for the com-
parator arm. These trials included ADCS studies evalu-
ating the effects of simvastatin [24], docosahexaenoic
acid supplementation [39], estrogen replacement ther-
apy [40], B vitamin supplementation [41], rofecoxib or
naproxen [42] and prednisone [43], selected for their
inclusion of a placebo-treated arm, availability of ApoE
genotype data, availability of evaluations at matching
time points and for having similar baseline mean
ADAS-cog scores.
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Analysis of continual statin use
The effect of continual statin use (prior to study recruit-
ment) on ADAS-cog scores was examined (at study
baseline, before commencement of the trial treatment)
in AD subjects (n = 1393) pooled from ADNI [44] and
ADCS trials evaluating the effects of docosahexaenoic
acid supplementation [39], B vitamin supplementation
[41], huperzine A [45] and valproate [46], selected for
their availability of a baseline measurement of ADAS-
cog scores and for including both statin users and nonu-
sers. Of the 1393 subjects, 793 subjects had no known
concomitant statins use and were used as the control
group and a total of 600 subjects had known use of sta-
tins at baseline (Fig. 1b and Table 1B); 273 subjects were
treated with atorvastatin, 178 subjects were treated with
simvastatin, 28 subjects were treated with rosuvastatin,
eight subjects were treated with fluvastatin, 68 subjects
were treated with lovastatin and 45 subjects were treated
with pravastatin. Drug doses varied between subjects
and information regarding duration of treatment was
not available.

The Religious Order Study/Memory Aging Project dataset
A dataset comprising data combined from Religious
Order Study (ROS) and Memory Aging Project (MAP)
[47, 48] was obtained from the Rush Memory and Aging
Project [49] and accessed through the Sage Bionetworks
Synapse portal [50]. In brief, this dataset included 3103
subjects of which 859 were classified as having a prob-
able or highly probable diagnosis of AD at some point
throughout the study’s follow-up. AD diagnosis was
established through review of self-reported questions,

neurological examinations (when available), cognitive
testing and interviews of participants. Statin users were
defined as those subjects who reported ever using statins
[51]; duration of statin use was not available. Use of
nonstatin lipid-lowering drugs was also recorded and in-
cluded the use of any of the following: ezetimibe, fenofi-
brate, gemfibrozil, niacin, colesevelam HCl, omega-3-
acid ethyl esters, cholestyramine, fenofibric acid, colesti-
pol and probucol. All medications taken in the 2 weeks
prior to evaluation were reported by participants; con-
tainers were visually inspected and coded using the
Medi-Span Drug Data Base system. For each subject,
baseline was individually defined as the first visit at
which statin use was reported. MMSE [37] scores, global
cognitive scores, demographics data and information re-
garding other relevant medical conditions such as heart
conditions or stroke were collected and used in this ana-
lysis. The global cognitive scores were computed by
combining the results of 19 cognitive tests used to as-
sess five domains of cognitive function (episodic, se-
mantic and working memory, perceptual speed and
visuo-spatial ability). Raw scores from the individual
tests were converted to Z scores and averaged to
yield a global cognitive summary score, which was
used in our analysis [52].

Statistical analyses
For each of the analyses, baseline characteristics were
compared between the treatment and control arms; a
chi-squared test was used for categorical variables (gen-
der, ethnicity and ApoE4 carriers) and t tests were used
for continuous data (age, number of education years and

Fig. 1 Analyses workflows. a Re-analysis of simvastatin trial. b Analysis of continual use of statins from multiple AD trials and studies. c Analysis of
statin use from the ROS/MAP studies. AD Alzheimer’s disease, MAP Memory Aging Project, ROS Religious Order Study
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baseline cognitive scores). A level of significance of 5%
was used.
In the re-analysis of the ADCS simvastatin study

(Fig. 1a), differences in ADAS-cog scores between treat-
ment and control groups were evaluated using a mixed-
effects model implemented in R (using the lme4 package
[53]) to test for differences in the slopes (rate of change)
of the ADAS-cog score between the treatment and pla-
cebo groups over the entire follow-up period (five time
points: baseline, 3, 6, 12 and 18 months). The model in-
cluded the group effect, the visit (time) effect and
group-by-visit interactions, with ApoE genotype, race,
age, education level, the individual studies each subject
originated from and gender as covariates. The mixed-
effects model was selected because it utilizes data from
all participants (rather than just completers), minimizes
bias and better controls for type I error in the presence
of missing data [54].
For analysis of continual use of statins in a cohort of

subjects pooled from multiple Alzheimer’s clinical trials
and studies (at baseline), linear regression was used and
included ApoE genotype, race, age, education level, the
individual’s study and gender as covariates (Fig. 1b).
In the analysis of the ROS/MAP dataset, a Cox pro-

portional hazards model was used to estimate the effect
of statin use on incidence of AD, excluding subjects with
an AD diagnosis at baseline, and was adjusted for age,
gender, race, education level, ApoE genotype and any

diagnosis of heart conditions or of stroke. A chi-squared
test was used to calculate differences in AD prevalence
between statin users and nonusers.
A mixed-effects model was applied in the evaluation

of differences in change in MMSE or global cognitive
scores between statin users and nonusers over time
(Fig. 1c). Here, the model included the group effect, the
visit (time) effect and group-by-visit interactions, and
was adjusted for age, gender, race, education level, ApoE
genotype, diagnosis of heart conditions and diagnosis of
stroke.

Results
We first evaluated a possible therapeutic effect of simva-
statin on decline in ADAS-cog scores of persons diag-
nosed with AD by analysis of an integrated dataset of
failed Alzheimer’s clinical trials. For this analysis, sub-
jects treated with simvastatin (from the ADCS simva-
statin trial [24], the only statin trial available in the
dataset) were compared with subjects with no known
statin use (from multiple trials) who were pooled into a
single comparator arm (see Methods).
The demographics of the pooled comparator arm were

very similar to those in the original comparator arm
from the simvastatin trial (Table 1A). The main differ-
ence between the original and the pooled comparator
arms was the percentage of ApoE4 carriers, 60.2% in the
pooled comparator arm and 55.0% in the original

Table 1 Baseline demographic information for each of the treatment groups in the three analyses

A. Simvastatin trial re-analyses B. Continual use of statins (trials
from the integrated dataset)

C. Continual use of statins (ROS/MAP
dataset)

Simvastatin
arm

Original placebo
arm

New (pooled)
placebo arm

Statin users Statin nonusers Statin users Statin nonusers

Number of
subjects

171 169 460 600 793 346 513

Age (mean,
years)a

73.3 ± 9.8 SD 74.5 ± 8.9 SD 75.0 ± 8.6 SD 76 ± 7.5 SD 76.7 ± 8.4 SD 81.8 ± 6.6 SD 82.5 ± 6.7 SD

Gender
(% female)

57.7 60.5 58.9 49.8 59.5 74.3 69.0

Education
(mean, years)a

14.5 ± 2.9 14.2 ± 3.3 SD 14.2 ± 3.3 SD 14.0 ± 3.1 SD 14.0 ± 3.1 SD 15.9 ± 3.6 SD 16.3 ± 3.8 SD

Race (%)a 91.7 white and
5.8 black or
African American

93.2 white and
5.6 black or
African American

91.2 white and
5.4 black or
African American

91.8 white and
5.7 black or
African American

89.9 white and
6.9 black or
African American

91.0 white and
7.5 black or
African American

94.9 white and
4.9 black or
African American

ApoE4 carriers
(%)a

61.8 55.0 60.2 66.7 62.1 37.5 31.8

Mean baseline
cognitive
measure

24.2 ± 9.4 SD
(ADAS-cog)

24.0 ± 10.0 SD
(ADAS-cog)

23.9 ± 9.3 SD
(ADAS-cog)

23.5 ± 9.6 SD
(ADAS-cog)

24.9 ± 9.4 SD
(ADAS-cog)

25.3 ± 5.3 SD
(MMSE) –0.5 ±
0.8 SD (global
cognitive scores)

25.4 ± 4.0 SD
(MMSE) –0.55 ±
0.8 SD (global
cognitive scores)

A demographic information for the simvastatin trial re-analyses treatment arms, B demographic information for treatment groups used in the analysis of continual
use of statins (in five studies from the integrated clinical studies dataset), C demographic information for treatment groups used in the analysis of statins use in
the ROS/MAP datasets
ADAS-cog Alzheimer’s Disease Assessment Scale—cognitive subscale, MAP Memory Aging Project, MMSE Mini-Mental State Examination, ROS Religious Order Study,
SD standard deviation
aPercentage of those subjects with relevant information available
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comparator arm. Other than age, no differences in base-
line characteristics or baseline ADAS-cog were found
between the simvastatin and pooled placebo arms
(Table 1A). Age was statistically higher in the pooled
placebo arm relative to the simvastatin arm (p = 0.03),
but in the ApoE4/ApoE4 subgroups no differences in
age or any other baseline characteristics were found.
Comparison of ADAS-cog scores between the two

treatment groups over time revealed no significant dif-
ferences. However, when comparisons were conducted
for each subgroup of ApoE genotypes separately (Fig. 2),
some differences were observed (although not statisti-
cally significant). In subjects with the ApoE4/ApoE4
genotype, those treated with simvastatin showed lower
(better) ADAS-cog scores than those treated with pla-
cebo; an average difference of 6.1 and 7 points at 12 and
18 months of treatment, respectively. These differences
were not statistically significant but indicated a trend.
Next, we compared the effects of chronic, or contin-

ual, use of various statins on ADAS-cog scores. Subjects
(n = 1393) pooled from all treatment arms of five studies
(from the integrated clinical trials and studies dataset)
with a baseline assessment on the ADAS-cog were
grouped by their statin use status (users vs nonusers)
prior to study recruitment, and were examined as a pro-
spective observational cohort. Gender was significantly

different between statins users and nonusers (with fewer
females in the statin users group, p < 0.05), while no dif-
ferences were found in age, race, education or % ApoE4
carriers (Table 1B).
Comparison of ADAS-cog scores for subjects treated

with statins with those with no known use of statins (at
baseline of their respective study) revealed that statin
users were significantly less cognitively impaired than
those not treated with statins (with a mean score of 24.9
± 9.4 SD in nonusers and a mean score of 23.5 ± 9.6 SD
in statin users, p < 0.01; Fig. 3a). In the evaluation of in-
dividual statins, this effect was significant with the use of
atorvastatin (mean scores of 23.5 ± 9.6 SD, p = 0.026;
Fig. 3b) and marginally nonsignificant with the use of
lovastatin (mean scores of 22.4 ± 9.7 SD, p = 0.07)—both
of these are lipophilic statins predicted to have high
blood–brain barrier penetration [55]. No correlation was
found between ADAS-cog scores and total cholesterol
or triglyceride levels.
To validate our findings in another cohort of subjects,

859 AD subjects were identified in the ROS and MAP
research cohort datasets. Of these AD subjects, 513 sub-
jects had no known use of statins while 346 reported
using statins (Table 1C). No differences in age, gender,
race, education, MMSE or global cognitive scores were
found between the statin user and nonuser groups at

Fig. 2 ADAS-cog scores in subjects treated with simvastatin or placebo. a ADAS-cog scores over time in different genotype subgroups. b Change
in ADAS-cog scores from baseline in different genotype subgroups. ADAS-cog Alzheimer’s Disease Assessment Scale—cognitive subscale, ApoE
apolipoprotein E
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baseline (Table 1C); the statin nonuser group had fewer
ApoE4 carriers. Similarly, there were no baseline differ-
ences between the ApoE4/ApoE4 subgroups of statin
users and nonusers. No correlations were found between
MMSE or global cognitive scores and total cholesterol
levels in either statin users or nonusers.
In a Cox proportional hazards model (of 2570 subjects

from the ROS/MAP dataset, after excluding those with a
diagnosis of AD at baseline), statin use was associated
with lower risk of AD (HR = 0.8; 95% CI 0.68, 0.95; p <
0.01). At the end of follow-up, the prevalence of AD in
subjects using statins was 24.8% while in subjects with
no known use of statins (at start or throughout follow-
up) the prevalence of AD was 30.7% (p < 0.0005). Com-
parison between all AD statin users and nonusers re-
vealed no statistically significant differences in cognitive
function over time. However, in ApoE4/ApoE4 AD sub-
jects (n = 24), those who were treated with statins had
significantly better cognitive function over the course of
10-year follow-up, demonstrating significantly slower de-
cline in MMSE and global cognitive scores over time (p
< 0.01; Fig. 4). The use of nonstatin lipid-lowering drugs
had no significant effect on either cognitive measure;
however, there were only three subjects in the ApoE4/
ApoE4 AD nonstatin lipid-lowering drug user group.

Discussion
Clinico-pathological studies have demonstrated an ex-
tended preclinical phase of the disease, with pathological
processes estimated to begin up to 15–20 years prior to
the onset of clinical symptoms [56]. Cognitive impairment
occurs subsequent to a continuum of multiple indicators
of disease progression that precede cognitive dysfunction
and conversion to AD [57]. Thus, prevention or treatment
at the early or even preclinical stages of the disease are

extremely important and most likely have the greatest
chances for success [58].
Our re-analysis of data from a randomized, double-

blind, placebo-controlled trial examining the effect of
simvastatin on progression of symptoms in individuals
with mild to moderate AD [24] suggested by trend (but
not supported by statistical testing) that statins may have
some therapeutic effect. By pooling data from multiple
trials, a pattern of lower cognitive impairment—specifi-
cally in subjects with an ApoE4/ApoE4 genotype—was
demonstrated in the simvastatin-treated arm. Combining
subjects from different trials, with different selection cri-
teria, is likely to introduce some level of noise and pa-
tient variability. However, combining data from multiple
studies has the potential to lead to new discoveries and
insights [59–62]. By increasing the overall number of
subjects being analyzed (while controlling for similar
baseline characteristics and cognitive scores), and by
substantially increasing the number of ApoE4/ApoE4 ge-
notyped subjects in the dataset, we were able to demon-
strate a trend that was not detectable previously.
Because ApoE4 is known to be associated with higher
cholesterol levels and has been implicated in AD-
related process such as Aβ burden and inflammation, it
may act as a biomarker for subjects who would benefit
to a greater extent from use of statins. Lack of statis-
tical significance for the change in ADAS-cog scores
over time between the two treatment groups could be
explained by the small number of subjects with the
ApoE4/ApoE4 genotype for which scores were available
at baseline as well as at 12 or 18 months; alternatively,
it may be due to lack of effect. The results of this ana-
lysis hinted at a possible therapeutic effect of statins in
AD, and formed the basis for further investigation of
larger datasets.

Fig. 3 Continual use of statins vs placebo. a ADAS-cog scores at baseline. b Continual use of different statins vs no statin use. *Significant differences
between statin users and nonusers (p < 0.05). ADAS-cog Alzheimer’s Disease Assessment Scale—cognitive subscale
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To further investigate a possible beneficial effect of
statins, the effect of continual use of statins was evalu-
ated by grouping subjects from multiple studies and
clinical trials into effectively a retrospective observa-
tional cohort. Results of this analysis revealed that statin
users had better cognitive scores than nonusers; and this
effect was somewhat more evident with the use of some
lipophilic statins (atorvastatin and lovastatin). It has
been suggested previously that these specific statins may
be more effective in the treatment or prevention of cog-
nitive decline, at least in part, due to their ability to cross
the blood–brain barrier [55, 63]. However, evidence
from this study is insufficient to support the conclusion
that the beneficial effect of statins on ADAS-cog scores
is limited to lipophilic statins.
A shortcoming of this dataset arises from the variation

of dosages and lack of information regarding duration of
statin treatment. Thus it was not possible to differentiate
between subjects who may have been using statins for

several years and those who had only been using statins
for several months, and the length of treatment needed
to see an effect on cognitive decline could not be
assessed. Furthermore, it was unclear to what extent the
concomitant medication logs of the trials used in this
study were complete.
Cognitive measures were also evaluated in a second

cohort of AD subjects, established from the ROS and
MAP observational studies. Significant differences in the
change in cognitive scores over the course of 10-year
follow-up were found between ApoE4/ApoE4 genotyped
subjects with known statin use versus those with no
known statin use, further demonstrating that statin
treatment may lower cognitive decline. Previous analysis
of the ROS study alone found no differences in change
in cognitive scores between statin users and nonusers
[51]; however, these were not evaluated in subjects
homozygous to ApoE4 alone. When analyzing subjects
with an ApoE4/ApoE4 genotype, from a larger cohort

Fig. 4 Effect of continual use of statins on global cognitive scores and MMSE scores. Top panels: illustration of differences in the change in scores
(from baseline) in statin users and nonusers. Bottom panels: illustration of differences in scores between statin users and nonusers. Left-hand
panels: global cognitive score. Right-hand panels: MMSE score. Plot lines were smoothed using the locally weighted scatterplot smoothing (LOESS)
method; shaded areas represent the 0.95 confidence interval (blue line, statin users; red line, statin nonusers). MMSE Mini-Mental State Examination
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comprising both the ROS and MAP studies, these differ-
ences were detected. Our analysis of incidence rates of
AD in all statin users and nonusers from the ROS/MAP
dataset revealed significantly lower risk for AD in statin
users. These findings are consistent with findings from
the GEMS study in which statins were demonstrated to
slow the rate of cognitive decline and delay the onset of
AD in healthy subjects [64], as well as the Rotterdam
study in which use of statins was associated with de-
creased risk for AD [13]. Based on our initial findings, a
parallel independent validation analysis of Medicare re-
cords was conducted; results of those analyses are con-
sistent with findings reported herein and extend our
findings to indicate reduced incidence of AD in statin
users in both sexes and multiple races [65].
The ROS/MAP observational dataset also has short-

comings. In this dataset, 859 AD subjects were identified;
while ApoE genotype data were available, the number of
subjects with an ApoE4/ApoE4 genotype was relatively
small (24 AD subjects had a confirmed ApoE4/ApoE4
genotype, 16 statin users and eight nonusers). Addition-
ally, as with the continual statin use trial dataset, informa-
tion regarding the length of time for which subjects were
treated with statins or the dosage was not available. Future
work should focus on establishing which specific statin,
dosage and duration of treatment exert the greatest bene-
ficial effect. It is possible that a relatively long duration of
treatment (of many years) may be required. This would
also explain in part why clinical trials, which do not tend
to run for such extended durations, have failed to demon-
strate a protective or therapeutic effect of statins in AD.
While no correlations were found between cholesterol

levels and ADAS-cog scores, MMSE or global cognitive
scores, it is possible that statins may exert a beneficial ef-
fect on cognitive decline via a mechanism associated with
the restoration of cholesterol homeostasis. This would also
account for the difference in the significance of the benefi-
cial effects observed in the analyses of our prospective
datasets vs the re-analysis of the clinical trial (where sub-
jects with dyslipidemia were excluded from the
simvastatin-treated arm). Evidence has suggested that
rs3846662, a polymorphism in the HMG-CoA reductase
gene, is a genetic modifier for the risk, age of onset and
conversion of AD, and to a greater extent in ApoE4 car-
riers [66], supporting the involvement of HMG-CoA re-
ductase in the effect of statins in AD. Additionally,
lovastatin has been show to lower brain cholesterol in nor-
mal but not ApoE-deficient mice [67]. However, it may also
be the case that statins can affect cognitive decline by oper-
ating on targets other than the HMG-CoA reductase en-
zyme for which they are targeted. There is a growing body
of preclinical evidence supporting targets for statins in the
brain including nonamyloid mechanisms as well as targets
that are independent from HGM-CoA reductase [68, 69].

While various factors were controlled or adjusted for, it
is possible that other confounders or biases could account
for the differences found between statin users and nonu-
sers in the analyses presented here. For example, if statins
are more likely to be prescribed to patients with good cog-
nition, reverse causation could lead to a misleading
beneficial association. Additionally, other differences in
prescription practices, indications for statin use and adher-
ence to treatment may also confound our analyses [70].
Because it is difficult to draw definitive conclusions from

observational studies, a randomized controlled trial is pre-
ferred for the investigation of the association between statin
use and dementia and AD. Past trials, however, have either
excluded patients with dyslipidemia or were not focused on
patients with dementia or AD. For example, two large-
scale, randomized, placebo-controlled trials of simvastatin
[71] and pravastatin [72, 73] in subjects with or at risk for
cardiovascular disease showed no effect on cognitive func-
tion. In both of these trials, however, cognition was only a
tertiary endpoint and subjects with dementia at baseline
were excluded. It may also be the case that earlier exposure
to statins is required in order to achieve a positive effect on
cognition, while exposure later in life, and closer to the on-
set of dementia and AD, would be less likely to have a
beneficial effect [74]. While a much larger and extensive
clinical trial, focusing on ApoE4 carriers, will be required
to validate our findings, these, along with those reported
previously, provide the foundation to design a precision
medicine approach to statin therapy for AD. A trial that in-
corporated the extensive existing data on efficacy of statins
to reduce risk or modify the course of disease, duration of
treatment, sex and ethnicities differences, stage of disease
progression and pharmacogenomic response to statins
would likely enhance probability of success and reduce
both participant number and trial duration.

Conclusions
Overall, our results indicate that the use of statins may
benefit all AD subjects and may be most beneficial in
subjects with an ApoE4/ApoE4 genotype. This work
provides an example for utilizing existing large patient-
level datasets, and for use of a precision medicine ap-
proach to evaluate the effect statins may have on cogni-
tive impairment and the identification of subpopulations
of subjects who will most benefit from such treatment.
Going forward, key issues to be explored are genotypes
and phenotypes most appropriate for statin therapy as a
preventive or disease-modifying therapy, and statins with
greatest therapeutic efficacy in ApoE genotypes for pre-
venting or delaying AD.
Results of our analyses contribute to a growing body

of evidence indicative of therapeutic benefit of statins
within a responder subset and thus have the potential to
impact the risk and course of AD.
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